All images copyright Christopher Laplante unless otherwise noted. Usage or reproduction of any kind is prohibited without permission.
Chapter 1
Fig 1.3. The Mandelbrot SetFig 1.4. Bifurcation diagram for \(f(x) = x^2 + c\) with
\(x=0\) and \(c\) swept from \(-2.0\) to \(1.0\)
Chapter 2
Fig 2.3. Julia set for \(f(z) = cos(z)\)Fig 2.4. Douady’s rabbitFig 2.5. Inferno color schemeFig 2.6. Douady’s rabbit created using 10 iterationsFig 2.7. Inferno color scheme utilization (dashed box) for Douady’s rabbit with 10 iterations.
Note how the darker colors on the left are not used because the escape iteration count starts at 3Fig 2.8. Douady’s rabbit created using 50 iterationsFig 2.9. Inferno color scheme utilization (dashed box) for Douady’s rabbit with 50 iterationsFig 2.10. Douady’s rabbit created using 200 iterationsFig 2.11. Douady’s rabbit created using 800 iterationsFig 2.12. Douady’s rabbit created using 800 iterations with histogram coloringFig 2.13. A Siegel diskFig 2.14. A dragonFig 2.15. The Julia set of \(sin(z)\)Fig 2.17. The Mandelbrot Set
Chapter 3
Fig 3.4. SealsFig 3.5. An amoeba-like image generated from the filled
Julia set of \(f(z) = Z^2+ .3-4i\)Fig 3.6. A fern leafFig 3.7. A fern leaf generated via IFSFig 3.8. IFS Representation of a treeFig 3.9. A forest of randomly generated fractal treesFig 3.10. A redwood forestFig 3.11. Green seaweedFig 3.12. Four-petaled flower from the Julia set of \(f(z) = z^2+0.384\)Fig 3.13. Another four-petaled flower from the Julia set of \(f(z) = z^2+0.2541\)Fig 3.14. A fractal storm cloudFig 3.15. "Three-dimensional" fractal cloudsFig 3.16. Fractal rocks using same IFS codes as the cloudsFig 3.17. Snowflakes generated by mandel_julia.rsFig 3.18. A snow fall generated by fall.rsFig 3.20. A randomly generated view of spaceFig 3.22. Dendrite structure generated by \(f(z) =z^2 + i\)Fig 3.23. An EKG output simulated using a Julia set
Chapter 4
Fig 4.1. CastleFig 4.2. A fractal mazeFig 4.3. "Winter reflections" by waferboard is marked with CC BY 2.0.
To view the terms, visit https://creativecommons.org/licenses/by/2.0/?ref=openverse. Originally in color.Fig 4.4. Computer generated equivalent of swampy pond shown in "winter reflections"Fig 4.6. Bifurcation diagram for model economic systemAn example Game of Life run